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Velocity Pointing Errors Associated
with Spinning Thrusting Spacecraft

Daniel Javorsek II ¤ and James M. Longuski†

Purdue University, West Lafayette, Indiana 47907-1282

Because of the imperfection of spacecraft assembly, there always exist misalignment and offset torques during
thrust maneuvers. In the case of an axially thrusting spin-stabilized spacecraft, these torques disturb the angular
momentum vector in inertial space causing a velocity pointing error. Much insight can be gained by analytically
solving the problem of time-varying torques and time-varying moments of inertia. We use approximate analytic
solutions to suggest how the velocity pointingerror can be reduced for some practical assumptionsbased on current
technology. For example, in the case of solid rocket motors, a signi� cant improvement in velocity pointing can be
realized by judicious distribution of the propellant.

Nomenclature
a = acceleration,m/s2

C = Fresnel cosine
d = offset distance, m
F = thrust, N
H = angular momentum, kg-m2/s
h = distance from throat of nozzle to the center of mass, m
I = principal moment of inertia, kg-m2

J = impulse, kg-m/s
M = moment, Nm
m = mass, kg
Çm = mass-� ow rate, kg/s
S = Fresnel sine
t = time, s
a = misalignment angle, deg
c = angle between actual velocity vector and desired

velocity vector, deg
D V = velocity change, m/s
e = error
q = angle between average angular momentum vector and

inertial Z axis, deg
u = Euler angles, deg
X = initial spin rate, rad/s
x = angular velocity, rad/s

Subscripts

b = total burn, used to distinguish the total burn time
f = � nal state
r = ramp, used to distinguish ramp times
X, Y, Z = orthogonal inertially � xed coordinates
x , y, z = orthogonal body-� xed coordinates
0 = initial state

Introduction

I T is impossible to build an ideal thrusting mechanism in a real
spacecraft.Various anomalies, such as thruster misalignment or

center-of-mass offset, will create body-� xed torques transverse to
the spin axis. An example of such a con� guration is shown in Fig. 1
(where d and a are exaggeratedfor clarity). We restrict our analysis
to the case of an axially thrusting spin-stabilizedspacecraft, where
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transverse torquesperturb the angularmomentum vector H from its
original direction and induce a velocity pointing error.

Longuski et al.1 investigate the thrusting spinning spacecraft for
constant body-� xed torques and constant moments of inertia and
demonstrate that the angular momentum vector and the velocity
vectorare offset in inertial space by the same bias angle.We address
a related problem and begin our analysis by obtaining approximate
analytical solutions for two different cases: 1) time-varying torque
with constantmoments of inertia and 2) constant torquewith a time-
varying moment of inertia. Each of these approximate analytical
solutions provides insight into how velocity pointing error can be
reduced signi� cantly with a prescribed thrust pro� le.

In case 1 we study linearly changingbody-� xed torques and their
impact on the behavior of the angular momentum vector. This case
applies to short duration burns where the inertia properties remain
nearly constant. In case 2 we consider the common spacecraft dy-
namics problem in which a signi� cant amount of propellant is con-
sumed (such as in the case of an upper-stage injection of a satellite
into geostationary or escape orbit). Case 2 also addresses the mo-
tion of the angularmomentumvector in inertial space.The solutions
derived in each case permit us to piece together an approximate an-
alytical solution for the angular momentum vector behavior for a
particularthrustpro� le. Based on the analyticsolution,we prescribe
a thrust pro� le that minimizes the angular momentum pointing er-
ror. In a high-� delity case study we show that the resulting velocity
pointing error is signi� cantly less than that achieved with a conven-
tional thrust pro� le.

Figure 1 illustrates the problem con� guration, where h(t ) is the
vertical distance from the point of the force application to the center
of mass (CM) and F(t ) is the thrust.

Analytic Solutions
Case 1: Constant Moment of Inertia with Time-Varying Torque
Simple Model for the Angular Momentum Vector

We will work directly with Euler’s law about the CM:

M =
dH
dt

(1)

By assuming a nearly symmetric spacecraft with no axial torque,
the spin rate X will be constant.Furthermore, to eliminate the com-
plications of solving for the attitude motion (e.g., Euler angles) we
assume the transverse body-� xed torque Mx remains in the inertial
XY plane. For a symmetric spacecraft we set My =0 without loss
of generality. For a linearly time-varying Mx in the body xy plane
and referring to Fig. 1, we have

Mx = F (t )[h(t ) sin a + d cos a ] (2)

or

Mx = c1t + c2 (3)
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Fig. 1 Spacecraft and rocket con-
� guration.

From these assumptions Eq. (1) can be written as

ÇHX = MX = (c1t + c2) cos X t (4)

ÇHY = MY = (c1t + c2) sin X t (5)

ÇHZ = MZ = 0 (6)
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For the initial conditions HX (0) = HY (0) =0 and HZ (0) = Iz x z0 =
Iz X , the integration of Eqs. (4–6) provides the following:

HX =
¡
c1 ê X 2

¢
cos X t + [(c1t + c2) / X ] sin X t ¡ c1 ê X 2 (7)

HY =
¡
c1 ê X 2

¢
sin X t ¡ [(c1t + c2) / X ] cos X t + c2 ê X (8)

HZ = Iz X (9)

The assumption that MX remains in the inertial XY plane has
serious limitations and must be applied with caution. To check our
heuristic solution for the angular momentum behavior, we apply a
more formal approach starting with Euler’s equations of motion.1

Outline of Formal Solution for the Angular Momentum Vector
For time-varying torques and constant principal moments of in-

ertia, Euler’s equations of motion are

Mx = Ix Çx x + ( Iz ¡ Iy) x y x z (10)

My = Iy Çx y + ( Ix ¡ Iz) x z x x (11)

Mz = Iz Çx z + ( Iy ¡ Ix ) x x x y (12)

Assuming a near symmetric rigid body Ix ¼ Iy under the in� uence
of a single time-varying torque Mx , the spin rate is nearly constant
with time (i.e., x z ¼ x z0 = X ). The solutions of Euler’s equations
of motion are relatively insensitive to variations in Ix and Iy if the
orientation changes in H are small.2,3

There are 12 forms of Euler-anglerotation representationsto give
the attitude of a spacecraft. If a type 1: 3-1-2 rotation is used,4 the
kinematic equations are

Çu x = ( x z cos u z ¡ x x sin u z) sec u y (13)

Çu y = x x cos u z + x z sin u z (14)

Çu z = x y + ( x x cos u z + x z sin u z) tan u y (15)

Table 1 Spacecraft and PAM data for numerical simulation

Property Notation Quantity

Maximum thrust force Fmax 76,100 N
Maximum CM offset d 0.02 m
Thrust misalignment a 0.25 deg
Initial distance from throata to CM h0 0.80 m
Final distance from throat to CM h f 1.55 m
Initial spin rate X 0 70 rpm
Initial PMOIb about x axis Ix0 858 kg-m2

Final PMOI about x axis Ix f 222 kg-m2

Initial PMOI about y axis Iy0 858 kg-m2

Final PMOI about y axis Iy f 222 kg-m2

Initial PMOI about z axis Iz0 401 kg-m2

Final PMOI about z axis Iz f 102 kg-m2

Mass m 2,500 kg
Mass-� ow rate Çm ¡ 24 kg/s

aThroat of the nozzle for the motor. bPrincipal moment of inertia.

For small u x and u y an analytic solution is obtained5 for the case of
near symmetric rigid bodies with constant body-� xed torques.

When analytic expressions are available for Euler’s equations of
motion and the preceding Eulerian angles, the angular momentum
vector in inertial space can be evaluated using

where c and s denote the cosine and sine. This relationship may be
simpli� ed for small angles.

Comparison of Analytical Solution with Numerical Results
Equations (7–9) indicate that the angular momentum vector fol-

lows a spiralpath in space (as shown in Fig. 2a). We haveveri� ed our
heuristic approach, by performing a highly precise numerical inte-
grationofEqs. (10–15)andusingEq. (16). (For the numericalvalues
representedin Table 1, themaximumerror between the heuristicand
the numerically integrated solutions is around 3.6 £ 10 ¡ 3 mrad.)

Case 2: Time-Varying Moment of Inertia with Constant Torque
Simple Model for the Angular Momentum Vector

Again we use Euler’s law

M =
dH
dt

(17)

This time we cannot assume the spin rate is constant. To make the
equations integrable, a constant transverse torque Mx is assumed
(with My =0). To simplify the approximate analytical solution, we
neglect jet damping. For the case of generalized torques and a vari-
able moment of inertia, Euler’s third equation of motion becomes

Mz = ÇIz(t ) x z(t) + Iz(t ) Çx z(t ) + (Iy ¡ Ix ) x x x y (18)

For a nearly symmetric rigid body Eq. (18) becomes

Mz = ÇIz(t ) x z(t) + Iz(t ) Çx z(t ) =
d

dt
[Iz(t) x z(t )] (19)

Assuming no z-axis torque (Mz =0), Eq. (19) indicates that
Iz(t ) x z(t) is constant.Therefore, HZ is conservedand remains con-
stant in inertial space with the magnitude

HZ = Iz(0) x z(0) = Iz(t) x z(t ) (20)

As a result, when Iz changes, the spin rate must also change to
conserve HZ by the following equation:

x z(t ) = HZ / Iz(t ) = Iz0 X / Iz(t ) (21)
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a)

b)

c)

Fig. 2 Analytical solution to the angularmomentum vector in inertial
space for phase a) 1, b) 2, and c) 3 of the trapezoidal thrust scheme.

Using the heuristic approach,Euler’s law results in the following:

ÇHX = MX = Mx cos

» Z t

0

³
Iz0 X

Iz(t )

´
dt

¼
(22)

ÇHY = MY = Mx sin

» Z t

0

³
Iz0 X

Iz(t )

´
dt

¼
(23)

ÇHZ = 0 (24)

Equations (22) and (23) are integrable in terms of Fresnel integrals
if

Z t

0

³
Iz0 X

Iz(t )

´
dt = at2 + bt + c

= at2 + X t (25)

This implies that

Iz(t ) = Iz0 / (2at / X + 1) (26)

For small values of 2at / X , Eq. (26) can be approximated by

Iz(t) = Iz0(1 ¡ 2at / X ) (27)

so that Iz decreases linearly as a function of time. For the initial
conditions HX (0) = HY (0) =0, and HZ (0) = Iz0 X , the integration
of Eqs. (22–24) provides
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HZ (t ) = Iz0 X (30)

The Fresnel integrals in Eqs. (28) and (29) can be approximated as
follows6:

C(z) =
1

2
+ f (z) sin

³
p

2
z2

´
¡ g(z) cos

³
p

2
z2

´

S(z) =
1

2
¡ f (z) cos

³
p

2
z2

´
¡ g(z) sin

³
p

2
z2

´

f (z) =
1 + 0.926(z)

2 + 1.792(z) + 3.104(z2)
+ e (z), j e (z) j · 2 £ 10 ¡ 3

g(z) =
1

2 + 4.142(z) + 3.492(z2) + 6.670(z3)
+ e (z)

j e (z) j · 2 £ 10 ¡ 3 (31)

For a more accurate representation (j e j ·10 ¡ 9), see Ref. 7.

Comparison of Analytical Solution with Numerical Results
A sample plot of the inertial angular momentum components

represented by Eqs. (28–30) is shown in Fig. 2b. As in case 1, we
tested our heuristic approach against numerical integration. (The
values provided in Table 1 result in a difference between the two
solutions of 4.2 £ 10 ¡ 2 mrad.)

Thrusting Maneuvers
Construction of an Analytic Solution for the Trapezoidal
Thrust Scheme

We wish to producea thrust pro� le to minimize velocitypointing
error while simultaneously driving the angular momentum vector
back to its initial position.Our goal is to maintain the averageorien-
tation of H along the initial inertial Z direction,which is the desired
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Table 2 Summary of each phase of the trapezoidal thrust scheme

Phase Thrust Iz Distance to CM Mass Invariant constants

1 Linearly increasing Iz0 h0 m0 Ix , Iy , d , a
2 Fmax Linearly decreasing (h0 + h f ) /2 (m0 + m f ) /2 Ix , Iy , d , a
3 Linearly decreasing Iz f h f m f Ix , Iy , d , a

Fig. 3 Sample thrust pro� le of the trapezoidal thrust scheme.

direction of the D V. Even though H moves around in inertial space,
if its average orientation is along Z, the velocity vector will tend to
align along Z as well. The trapezoidal thrust pro� le shown in Fig. 3
accomplishes the goal of maintaining the average H along Z. Piec-
ing together the solutions already derived for each segment of the
pro� le creates the correspondinganalytical solution for the angular
momentum vector.

In general,a spacecrafthas principalmoments of inertiaand mass
properties that are changing with time. In the trapezoidal thrust
scheme we always assume that Çm and h are constant (where average
values are used for the constants). The thrust increases linearlyover
the � rst phase of the burn. Because this phase is short compared
to the entire burn time, we assume constant principal moments of
inertia in the analytic solution. During the second phase, the thrust
is held constant, and the principalmoment of inertiaassociatedwith
the axis of symmetry decreases linearly. The burn time of the third
and � nal phase is shorter than that of the � rst phase because of
the increased spin rate that results from the decreasing Iz in phase
2. Again we assume constant moments of inertia while the thrust
decreases linearly (Table 2).

It is not necessary that the thrust pro� le be entirely symmetrical.
Because the spin rate is increasing throughout the burn, trf will not
have to be as long as tr0 in order to obtain the same results.However,
each of them will be dependenton the spin rate X with the following
relationship:

tr > n(2 p / X ) (32)

where n is some integer. For the ideal case when the initial and
� nal spin rates are known exactly, n =1 will permit minimized
pointing errors and will result in a � nal angular momentum vector
positioncoincidentwith the initialposition.In practice,however,we
never obtain the precise spin rate we desire. Thus, dependingon the
amount of uncertaintywe have in the spin rate, thevalue forn should
be greater than one. The sensitivityof the velocity pointing error to
uncertainty in spin rate decreases as n increases. In our numerical
example (Fig. 2a) we use a value for n of 12, which results in the
angular momentum vector making 12 intermediate spirals on the
initial ramping portion of the trapezoidal thrust scheme (phase 1).

Thus, the analytical solution for the trapezoidal thrust scheme
results in a combination of the preceding solutions and can be rep-
resented by the following equations.

Phase 1, t < tr0:

HX = (h0 sin a + d cos a )(Fmax / tr0 X 0)[(1/ X 0) cos( X 0t )

+ t sin( X 0t ) ¡ 1/ X 0]

HY = (h0 sin a + d cos a )(Fmax / tr0 X 0)[(1/ X 0) sin( X 0t)

¡ t cos( X 0t)]

HZ = IZ0 X 0 (33)

Phase 2, tr0 < t < tb ¡ trf:
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Phase 3, tb ¡ trf < t < tb:

HX = (h f sin a + d cos a )(Fmax / trf X f )[ ¡ (1/ X f ) cos( X f t )

+ (tb ¡ t ) sin( X f t) ¡ 1/ X f ]

HY = (h f sin a + d cos a )(Fmax / trf X f )[ ¡ (1/ X f ) sin( X f t)

¡ (tb ¡ t ) cos( X f t) + tb]

HZ = Iz f X f (36)

Velocity Pointing Errors During Thrusting Maneuvers
Let us use the angles q X and q Y to specify the orientation of the

angular momentum vector in inertial space:

tan q X = HX / HZ (37)

tan q Y = HY / HZ (38)

The average values of these angles provide an accurate approxima-
tion for the velocity pointing error even when Mx and Iz are time
varying as in our case.

In general, the velocity change in inertial space during thrusting
can be found through integration of the acceleration equations

2

4
aX

aY

aZ

3

5 = A

2

4
Fx / m

Fy / m

Fz / m

3

5 (39)

where A is the transformationmatrix given in Eq. (16) and Fx , Fy ,
Fz represent the body-� xed forces.

To de� ne the velocitypointingerror, we assume an instantaneous
inertial frame moving with the spacecraftwhere the thrust duration
is assumed to be instantaneous.The desired D V is along the inertial
Z axis, and in practice this is very nearly so. Integrating Eq. (39)
provides the components of the velocity change in inertial space,
namely D VX , D VY , and D VZ . We use the transversevelocities D VX

and D VY to de� ne the velocity pointing error angles c X and c Y :

tan c X = D VX / D VZ (40)

tan c Y = D VY / D VZ (41)

where D VX and D VY are much smaller than D VZ .
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Fig. 4 Motion of the angular momentum vector in inertial space for
constant and ramp-up thrusts.

Fig. 5 Schematic of generic spacecraft with the PAM.

Because the velocity pointing error is dictated by the average
angular momentum vector,1 we can approximate this error by sum-
ming the H vectors from Eqs. (33–36) and dividingby the total burn
time. For the trapezoidal thrust scheme this means that we have an
analytic solution for the velocity pointing error of the spacecraft.
The conclusion is that the trapezoidal thrust scheme keeps the av-
erage angular momentum vector along the Z axis. Figure 4 shows
this relationshipand compares the � rst phase (the ramp-upsegment)
of the trapezoidal thrust scheme (Mx =c1t + c2 ) to a step function
thrust pro� le (Mx =constant). When the thrust pro� le is a step func-
tion, the angular momentum vector traces a small circle in inertial
space. The average angular momentum vector Havg, lies along the
center of this circle, as does the D V, which accounts for a velocity
pointing error q . On the other hand, when the thrust pro� le is a
ramp, the angular momentum vector traces a spiral in inertial space
where Havg remains along the desired direction, the Z axis. In this
case the D V is, to a high degree of accuracy, along the Z axis as
well. Thus the velocity pointing error is nearly zero.

We test these analytic solutions in the following case study.

Case Study: Numerical Evaluation
of the Payload Assist Module

In our numerical evaluationwe study the injectionof the Ulysses
spacecraft on its interplanetary trajectory to the sun. The space-
craft used the Payload Assist Module (PAM)—more speci� cally the
STAR 48B—to provide a 4.2-km/s velocity increment on 8 October
1990. We use approximate representativevalues for size, mass, and
spin rate of the Ulysses. Humble et al.8 provide data on the widely
used PAM. PAM’s nearly spherically symmetric inertia characteris-
tics simplify theanalysis.However, this analysiscouldbe performed
on any spacecraft and rocket combination given the principal mo-
ments of inertia of the system and their time histories. A schematic
of the generic spacecraft and rocket system is provided in Fig. 5.
The details of the derivationsof the mass propertiesare not included
in this paper but can be readily reproduced using the dimensions in
the � gure and the constants provided in Table 1.

Much of the data in Table 1 was accumulated from Jet Propul-
sion Laboratory reports,9 and relative sizes were determined from
manufacturers’engine pamphlets. Thrust misalignment is obtained
from the excellent work produced by Knauber,10 which states that
most upper-stage� xed nozzle solid rocket motors have a thrustmis-
alignment of less than 0.25 deg.

The � rst part of the case study is an evaluation of the approxi-
mate behavior of the generic system. The model includes linearly

a) Thrust pro� le

b) Velocity pointing error

Fig. 6 Star 48B.

changing principalmoments of inertia for all three axes to provide a
model that is as accurate as possible.We assume that the CM travels
at a constant velocity from the initial to the � nal positions given in
Table 1. The model also assumes a constantmass-� ow rate. Finally,
unlike the analytical solutions presented before, the higher � delity
model used in the case study includes jet damping.

The CM offset is used as the radius for the jet damping.Following
Thomson,11 we arrive at the equations of motion

Mx = Ix Çx x + ÇIx x x + (Iz ¡ Iy ) x y x z ¡ Çm(h2 + d2 / 2) x x

My = Iy Çx y + ÇIy x y + (Ix ¡ Iz) x x x z ¡ Çmh2 x y

Mz = Iz Çx z + ÇIz x z + (Iy ¡ Ix ) x x x y ¡ Çmd 2 x z (42)

These equationsare numerically integratedalong with Eqs. (13–15)
and Eq. (39) for the Star 48B thrust pro� le. Data for the Star 48B
thrust pro� le are represented by the 14th-order polynomial curve
plotted in Fig. 6a. The subsequent velocity pointing error is shown
in Fig. 6b. The average pointing error of 59.5 mrad is also visible in
the � gure.

Next we analyze the ef� cacy of the trapezoidal thrust scheme
in our case study. To make the comparison as realistic as possible,
the burn time, maximum thrust, and total impulse are held constant
for both thrust pro� les. By working backwards from the known
impulse, maximum thrust, and burn time, we are able to calculate
the necessary ramp times and to set the rise time of each phase
to be tr0 =trf =tr . Using the speci� cation in Eq. (32) with n =12,
we con� rmed that the computed rise time is large enough for the
trapezoidal thrust scheme to prove bene� cial.
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a) Thrust pro� le

b) Velocity pointing error

Fig. 7 Trapezoidal thrust scheme.

It is very important that the burn time, maximum thrust, and total
impulse remain constant between the two comparisons. This re-
quirement is necessary because the PAM is designed to withstand a
certain maximum chamber pressure. Because the chamber pressure
is proportional to the thrust, the trapezoidal thrust pro� le cannot
exceed the prescribed maximum thrust. The engine is similarly de-
signed to accomplisha speci� c mission by providinga speci� c total
impulseover a speci� ed burn time. These parametersuniquelyspec-
ify the engine performance. The ramp time tr is calculated with the
following equation:

tr = tb ¡ J/ Fmax (43)

The impact of the trapezoidal thrust scheme in our case study is
shown in Fig. 7. The only modi� cation is the shape of the thrust pro-
� le (Fig. 7a). The velocitypointingerror is only 0.81 mrad (Fig. 7b).
By comparingFigs. 6b and 7b,we seea drasticdecreasein the veloc-
ity pointingerror.This result is consistentwith the goal of maintain-
ing the average angular momentum vector along the Z axis, which
is nearly achievedas shown in Figs. (2a–2c). The error predictedby
the analyticalmethod [Eqs. (33–36)], based on the average orienta-
tion of the angular momentum vector, is 0.58 mrad, which is near
the actual value of 0.81 mrad. Table 3 summarizes these results.

From our case study we make a numberof observations.First, we
note that the thrustpro� le is dictatedby the graingeometry, i.e., how
we choose to expose new burn surface area. We can greatly reduce
the velocity pointing error by carefully designing the propellant
grain geometry. Second, the error committed in our assumptionsof

Table 3 Summary of velocity pointing errors
for the case study

Pointing error,
Thrust pro� le q , mrad

Star 48B (Fig. 6a) 59.5
Trapezoidal thrust scheme (Fig. 7a) 0.81

Table 4 Pointing error dependence
on model assumptions

Velocity pointing
Quantity held constant error, q , mrad

None (case study) 0.811
Without jet damping 0.797
m 0.809
h 0.870
Ix , Iy 0.796
Iz 0.150

Fig. 8 Velocity pointing error dependence on spin rate for the trape-
zoidal thrust scheme (case study).

constant Ix , Iy , havg , and Çm in our analytical analysis is negligible
as con� rmed by the numerical results. Table 4 provides values for
the pointingerrorwhen differentparameters,which were allowed to
vary in the case study, are held constant. The � rst value listed is the
error found in the case study using the trapezoidal thrust scheme,
0.811 mrad. By holding various quantities constant, we see that the
variation in Iz has a signi� cant effect on the velocity pointing error.

Finally, in the case of the Ulysses spacecraft, we note that if
60 mrad is an acceptablepointing error then the advantageof using
the trapezoidal thrust scheme is that the spacecraftneed not be spun
up to sucha high spin rate. In fact, with the trapezoidalthrustscheme
we would only need to spin the spacecraft at 25 rpm instead of the
actual70 rpm used in Ulysses to achievethe same pointingaccuracy.
For most spin-stabilized spacecraft this is a costly maneuver that
must be performed to maintain stability. The bene� ts are realized
again if the spacecraft must be despun after the maneuver. This
dependenceon spin rate is shown in Fig. 8. The general trendfollows
the 1/ X 2 law noted in earlier work.1

Of course, these models are only approximations of the actual
mass and inertia behaviors over time. Many things were not taken
into account. We have neglected thermal effects at startup and
burnout of the engine and have used an entirely steady-state anal-
ysis when performing rocket ballistics. In practice it is dif� cult to
achieve the low thrust levels in phase 1 so that the trapezoidalshape
cannot be enforced exactly. Finally, a more practical thrust pro� le
would be similar to that of a trapezoid with rounded corners. In any
case, we believe the general statements about the rise time still ap-
ply. An interesting follow-on study would be to investigate a grain
geometry that permits low initial thrust levels.
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Conclusions
1) The velocity pointing error can be closely approximated by

the average orientation of the angular momentum vector in inertial
space. Approximate analytic solutions for the angular momentum
vector are found by directly integrating Euler’s law.

2) For a solid rocket motor, by judiciously loading propellant so
that the engine thrust pro� le closely matches a trapezoid, large ben-
e� ts can be gained in reducingvelocitypointing error. This strategy
can be employedin other propulsionsystemswhere the thrustpro� le
can be speci� ed.

3) For a given velocity pointing error, the trapezoidal thrust
scheme allows for a lower spin rate.
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